

Certificate of compliance

Applicant:	Delta Electronics, Inc. 39, Sec.2, Huandong Road Shanhua Dist., Tainan City 74144 Taiwan
Product:	Grid-tied photovoltaic (PV) inverter
Model:	RPI H5A_12X RPI H5A_02X
	Note: "X" in the inverter name can be 0~9, A~Z or blank

Use in accordance with regulations:

Automatic disconnection device with single-phase mains surveillance in accordance with Engineering Recommendation G59/3 for photovoltaic systems with a single-phase parallel coupling via an inverter in the public mains supply. The automatic disconnection device is an integral part of the aforementioned inverter. This serves as a replacement for the disconnection device with isolating function that can access the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G59/3:2013

Recommendation for the Connection of Generating Plant to the Distribution Systems of licensed Distribution Network Operators.

DIN V VDE V 0126-1-1:2006-02 (Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

The RPI H5A_12X and RPI H5A_02X are rated >16A per phase and <= 17kW (1 phase). The default values for "Small Power Stations" on the low-voltage grid were verified.

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number: Certificate number: Date of issue: PVUK140529C19-G59/3 U14-0536 2014-10-15

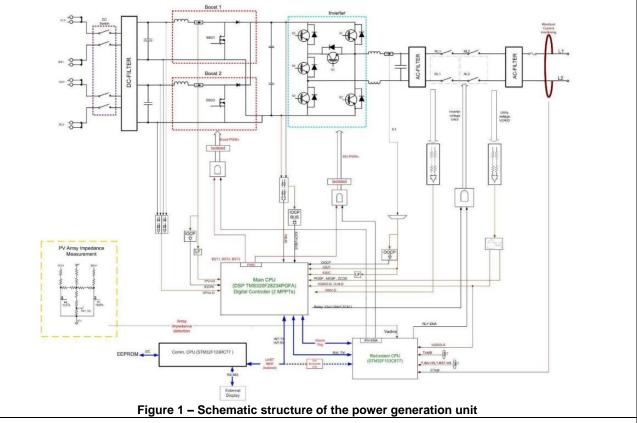
Certification body

DAkkS Deutsche Akkreditierungsstelle D-ZE-12024-01-01

Certification body of Bureau Veritas Consumer Products Services Germany GmbH Accredited according to EN 45011 - ISO / IEC Guide 65

Dieter Zitzmann

BUREAU VERITAS Consumer Products Services Germany GmbH Businesspark A96, 86842 Türkheim, Germany Phone: + 49 40 74041-0 cps-tuerkheim@de.bureauveritas.com www.bureauveritas.de/cps


Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Type Approval and declaration of compliance with the requirements of Engineering Recommendation G59/3.							
Manufacturer / applicant:	Delta Electronics, Inc.						
	39, Sec.2, Huandong Road						
	Shanhua Dist., Tainan City 74144						
	Taiwan						
Generating Unit technology	Grid-tied photovoltaic inverter						
Rated values	RPI H5A_12X	RPI H5A_02X					
Maximum rated capacity	5,0 kW	5,0 kW					
Rated voltage	230V	230V					
Firmware version	Comm: V2.03, DSP: V2.01, RED: V2.00	Comm: V2.03, DSP: V2.01, RED: V2.00					
Note: "X" in the inverter name can be 0-	-9, A~Z or blank						
Measurement period:	2014-08-08 to 2014-10-08						

Description of the structure of the power generation unit (Figure 1): The power generation unit is equipped with a PV and line-side EMC filter. The power generation unit has no galvanic isolation between DC input and AC output. Output switch-off is performed with single-fault tolerance based on two seriesconnected relays in line and neutral. This enables a safe disconnection of the power generation unit from the network in case of error.

Differences between Generating Units:

Difference between Model RPI H5A_12X and model RPI H5A_02X is a DC-switch, which is included in model RPI H5A_12X and not in model RPI H5A_02X.

The above stated Generating Units are tested according the requirements in the Engineering Recommendation G59/3. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G59/3.

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Protection. Voltage tests.										
230V grid-setting										
Function	Set	ting	Trip	test	No trip	test				
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip				
U/V stage 1	200,1V	2,5s	199,4V	2,640s	204,1V / 3,5s	No trip				
U/V stage 2	184V	0,5s	183,3V	0,636s	188V / 2,48s	No trip				
					180V / 0,48s	No trip				
O/V stage 1	262,2V	1,0s	262,3V	1,111s	258,2V 2,0s	No trip				
O/V stage 2	273,7V	0,5s	273,6V	273,6V 0,638s		No trip				
					277,7V 0,48s	No trip				

Protection. Volta	ge tests.									
240V grid-setting										
Function	Set	ting	Trij	p test	No trip	test				
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip				
U/V stage 1	208,8V	2,5s	208,9V	2,536s	212,9V / 3,5s	No trip				
U/V stage 2	192V	0,5s	192,1V	0,541s	196,2V / 2,48s	No trip				
	- -	· · · · · ·			187,8V / 0,48s	No trip				
O/V stage 1	273,6V	1,0s	273,5V	1,044s	269,4V 2,0s	No trip				
O/V stage 2	285,6V 0,5s 285,5V 0,533s		0,533s	281,4V 0,98s	No trip					
					289,8V 0,48s	No trip				

Note. For Voltage tests the Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Protection. Frequency tests.								
Function	Sett	ting	Trip	test	No trip test			
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip		
U/F stage 1	47,5Hz	20s	47,5Hz	20,26s	47,7Hz / 25s	No trip		
U/F stage 2	47Hz	0,5s	47Hz	0,737s	47,2Hz / 19,98s	No trip		
					46,8Hz / 0,48s	No trip		
O/F stage 1	51,5Hz	90s	51,5Hz	90,293s	51,3Hz / 95s	No trip		
O/F stage 2	52Hz 0,5s 52Hz 0,656s				51,8Hz / 89,98s	No trip		
			<u>.</u>		52,2Hz / 0,48s	No trip		

Note. For Frequency I rip tests the Frequency required to trip is the setting $\pm 0,1Hz$. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting $\pm 0,2Hz$ and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Loss of Mains.										
	BS EN 62116									
Balancing load 33% of 66% of 100% of 33% of 66% of on islanded -5% Q -5% Q -5% P +5% Q +5% Q network Test 22 Test 12 Test 5 Test 31 Test 21										
Trip time. Ph1 fuse removed	74ms	83ms	83ms	62ms	72ms					
Note for technologie the trip occurred in										
Indicate additional s (Integrated interface	Relay with 15	hing equipment 2								

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Protection. Re-connection timer.											
Test should prove that the reconnection sequence starts in no less than 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 10.5.7.1.											
	Voltage										
Time delay	setting			Measured delay							
208	3			47s							
	I	Freque	ncy								
Time delay	setting			Measured delay							
208	3			44s							
230V grid-setting											
	Checks on no reconnel limits of table 1.	ection v	vhen voltage or	frequency is brought to	just outside stage 1						
	At 266,2V	ŀ	At 196,1V	At 47,4Hz	At 51,6Hz						
Confirmation that the Generating Unit does not re- connect.	No reconnection	No i	reconnection	No reconnection	No reconnection						
	240	V grid-	setting								
	Checks on no reconnel limits of table 1.	ection v	vhen voltage or	frequency is brought to	just outside stage 1						
	At 277,8V	At 277,8V At 204,5V At 47,4Hz At 51,6Hz									
Confirmation that the Generating Unit does not re- connect.	No reconnection	Noi	reconnection	No reconnection	No reconnection						

Protection. Frequency change, Stability test.									
	Start Frequency	Change	End Frequency	Confirm no trip					
Positive Vector Shift	49,5Hz	+9 degrees		No Trip					
Negative Vector Shift	50,5Hz	- 9 degrees		No Trip					
Positive Frequency drift	49,5Hz	+0,19Hz/sec	51,5Hz	No Trip					
Negative Frequency drift	50,5Hz	-0,19Hz/sec	47,5Hz	No Trip					

Г

Appendix 13.1 Type Testing a Generating Unit

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Power Quality. Harmonics.								
		Generating Unit to	ested to BS EN 610	00-3-12				
Generat	ting Unit rating per I	ohase (rpp)						
	At 45-55% of	rated ouput	100% of ra	ited output				
		2kW		5kW				
Harmonic	Measured Value (MV) in Amps			Measured Value (MV) in %		6 EN61000- in %		
					1 phase	3 phase		
2nd	0,105	0,49	0,198	0,91	8%	8%		
3rd	0,103	0,47	0,153	0,70	21,6%	N/A		
4th	0,033	0,15	0,062	0,28	4%	4%		
5th	0,082	0,38	0,115	0,53	10,7%	10,7%		
6th	0,019	0,09	0,038	0,17	2,67%	2,67%		
7th	0,050	0,23	0,068	0,31	7,2%	7,2%		
8th	0,015	0,07	0,029	0,13	2%	2%		
9th	0,049	0,22	0,065	0,30	3,8%	N/A		
10th	0,011	0,05	0,024	0,11	1,6%	1,6%		
11th	0,034	0,16	0,048	0,22	3,1%	3,1%		
12th	0,010	0,04	0,021	0,10	1,33%	1,33%		
13th	0,041	0,19	0,053	0,25	2%	2%		
14th	0,009	0,04	0,018	0,08	N/A	N/A		
15th	0,031	0,14	0,043	0,20	N/A	N/A		
16th	0,009	0,04	0,016	0,07	N/A	N/A		
17th	0,034	0,16	0,049	0,23	N/A	N/A		
18th	0,010	0,04	0,015	0,07	N/A	N/A		
19th	0,030	0,14	0,044	0,20	N/A	N/A		
20th	0,010	0,05	0,014	0,07	N/A	N/A		
21th	0,029	0,13	0,046	0,21	N/A	N/A		
22th	0,011	0,05	0,014	0,06	N/A	N/A		
23th	0,028	0,13	0,043	0,20	N/A	N/A		
24th	0,012	0,05	0,014	0,07	N/A	N/A		
25th	0,025	0,11	0,044	0,20	N/A	N/A		
26th	0,012	0,06	0,015	0,07	N/A	N/A		
27th	0,024	0,11	0,044	0,20	N/A	N/A		
28th	0,013	0,06	0,016	0,07	N/A	N/A		
29th	0,023	0,10	0,044	0,20	N/A	N/A		
30th	0,019	0,09	0,017	0,08	N/A	N/A		
31th	0,020	0,09	0,043	0,20	N/A	N/A		
32th	0,011	0,05	0,017	0,08	N/A	N/A		
33th	0,016	0,07	0,039	0,18	N/A	N/A		
34th	0,009	0,04	0,016	0,07	N/A	N/A		
35th	0,016	0,07	0,037	0,17	N/A	N/A		
36th	0,008	0,04	0,014	0,07	N/A	N/A		
37th	0,013	0,06	0,031	0,14	N/A	N/A		
38th	0,007	0,03	0,013	0,06	N/A	N/A		
39th	0,015	0,07	0,029	0,13	N/A	N/A		
40th	0,006	0,03	0,011	0,05	N/A	N/A		
THD ₄₀		1%		3%	23%	13%		
PWHD		6%		3%	23%	22%		

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Power Quality. Power factor.											
	230V grid-setting										
	216,2V	230V	253V	Measured at three voltage levels and at full							
Measured value	0,9990	0,9991	0,9992	output. Voltage to be maintained within ±1.5% of the stated level during the test.							
Limit	>0,95	>0,95	>0,95								
		240	/ grid-setting								
	225,6V	240V	264V	Measured at three voltage levels and at full							
Measured value	0,9978	0,9985	0,9991	output. Voltage to be maintained within ±1.5% of the stated level during the test.							
Limit	>0,95	>0,95	>0,95	Ĩ							

Power Quality. Voltage fluctuation and Flicker.										
		Star	ting			Stop	ping		Run	ning
	dmax	d	С	d(t)	dmax	d	lc	d(t)	Pst	Plt 2 hours
Measured values at test impedance	0,011%	0,25	50%	0,810%	0,011%	0,2	50%	0,810%	0,322	0,22
Normalised to standard impedance	0,011%	0,25	50%	0,810%	0,011%	0,2	50%	0,810&	0,322	0,22
Limits set under BS EN 61000-3-11	4%	3,3	3%	3,3% 500ms	4%	3,:	3%	3,3% 500ms	1,0	0,65
Test impedance	R			0,24* 0,4^	Ω			XI	0,15* 0,25	Ω
Standard impedance	R			0,24* 0,4^	Ω			XI	0,15* 0,25^	Ω

Power Quality. DC injection.								
Test level power	10%	55%	100%					
Recorded value	7mA	8mA	20mA					
As % of rated AC current	0,032%	0,037%	0,092%					
Limit	0,25%	0,25%	0,25%					

Extract from test report according the Engineering Recommendation G59/3

Nr. PVUK140529C19

Equil+ lov	el Contribution.
Faultiev	

For a directly coupled SSEG			For a Inverter SSEG		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	l _p	N/A	20ms	57	0
Initial Value of aperiodic current	А	N/A	100ms	57	0
Initial symmetrical short-circuit current*	I _k	N/A	250ms	57	0
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	57	0
Reactance/Resistance Ratio of source*	X/R	N/A	Time to trip	0,0014	In seconds

For rotating machines and linear piston machines the test should produce a 0s – 2s plot of the short circuit current as seen at the Generating Unit terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Self Monitoring – Solid state switching.	N/A		
It has been verified that in the event of the solid state switching device failing to disconnect the Generating Unit, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.			
Note. Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open.			